The formation of the area centralis of the retinal ganglion cell layer in the chick.
نویسندگان
چکیده
In adult domestic chickens, the neurones in the retinal ganglion cell layer are very unevenly disposed such that there is a sixfold increase in neurone density from the retinal edge to the retinal centre. The formation of the high ganglion-cell-density area centralis was studied on chick retinal wholemounts from the 8th day of incubation (E8) to 4 weeks after hatching (4WAH). The density of viable neurones and the number and the distribution of pyknotic neurones in the ganglion cell layer were estimated across the whole retina. Between E8 and E10, the distribution of neurones in the ganglion cell layer was anisodensitic with 53,000 mm-2 in the centre compared to 34,000 mm-2 in the periphery of the retina. Thereafter, a progressively steeper gradient of neurone density developed, which decreased from 24,000 mm-2 in the retinal centre to 6000 mm-2 at the retinal periphery by 4WAH. Neuronal pyknosis in the ganglion cell layer was observed between E9 and E17. From E11 onwards, consistently more pyknotic neurones were found in the peripheral than in the central retina. It was estimated that over the period of cell death approximately twice as many neurones died per unit area in the retinal periphery than in the centre. Retinal area measurements and estimation of neurone densities in the ganglion cell layer after the period of neurone generation and neurone death indicated differential retinal expansion, with more expansion in the peripheral than in the central retina. These observations allow us to conclude that the formation of the area centralis of the chick retina involves (1) slightly higher cell generation in the retinal centre, (2) higher rate of cell loss in the retinal periphery and (3) differential retinal expansion.
منابع مشابه
Stem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملRetinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملDevelopment of ganglion cell topography in ferret retina.
The adult ferret has approximately 90,000 retinal ganglion cells, arranged in a prominent area centralis and visual streak. The role of differential cell generation, cell death, and retinal growth in the control of adult retinal ganglion cell number and distribution was evaluated by examining basic aspects of retinogenesis, including growth in retinal area, developmental changes in the number, ...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 100 3 شماره
صفحات -
تاریخ انتشار 1987